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Spectral properties of three-dimensional quantum billiards with a pointlike scatterer
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We examine the spectral properties of three-dimensional quantum billiards with a single pointlike scatterer
inside. It is found that the spectrum shows cha@@mdom-matrix-likg¢ characteristics when the inverse of the
formal strengthv ! is within a band whose width increases parabolically as a function of the energy. This
implies that the spectrum becomes random-matrix-like at very high energy irrespective to the value of the
formal strength. The predictions are confirmed by numerical experiments with a rectangular box. The findings
for a pointlike scatterer are applied to the case for a small but finite-size impurity. We clarify the proper
procedure for its zero-size limit which involves nontrivial divergence. The previously known results in one-
and two-dimensional quantum billiards with small impurities inside are also reviewed from the present per-
spective [S1063-651X97)15606-9

PACS numbd(s): 05.45+b, 03.65—w

I. INTRODUCTION spectrum in the parameter space of particle energgd the
strength of the scatterets. In particular, statistical proper-
The quantum billiard with pointlike scatterers inside is aties of the spectrum are important because they reflect the
solvable model which still retains most of the interestingdegree of complexityregularity or chaosof underlying dy-
characteristics of nonintegrable quantum physics. The proBramics. For two dimensions, the problem has already been
lem is based on obvious physical motivations. The billiard isexamined in detail10,11]. The chaotic spectrurievel sta-
a natural idealization of the particle motion in bounded sysdistics of random-matrix theorj12—14)) appears along the
tems. The one-electron problem in quantum dots is a posJogarithmic strip” in the parameter spacez,v*). More
sible Setting which may be used as a Sing|e-e|ectron memorP’reCisely_,the effects of a pOIntllke scatterer with formal
a promising computational device in the future. It is nowStrengthuv are most strongly observed in the eigenstates with
possible to actually construct such structures with extremeln eigenvalue such that
pure semiconductors thanks to the rapid progress in the me-
soscopic technology. However, real systems are not free ﬂlni=v_*l 1)
from impurities which affect the electron motion inside. In 27 A '
the presence of a small amount of contamination, even a
single-electron problem in bounded regions becomes unmanvhereM is the mass of a particle moving in the billiard and
ageable. The modeling of the impurities with pointlike scat-A is an arbitrary mass scale. Equatidn indicates that the
terers is expected to make the problem easy to handle withmaximal physical coupling is attained at the value of formal
out changing essential physics, at least at low energy. coupling that varies with the logarithmic dependence of the
In spite of its seeming simplicity, the billiard problem particle energy. This energy dependence is a manifestation of
with pointlike scatterers is known to possess several nona phenomenon known as the scale anomaly, or the quantum
trivial properties. In two-dimensional billiards with a single mechanical breaking of scale invariands,16: In two di-
pointlike scatterer, one observes phase reversion of wavaension, the physics is expected to be energy independent,
function with the adiabatic rotation of the scatterer aroundsince the kinetic ternfLaplacian and the zero-range inter-
certain points inside the billiardl]. This can be regarded as action(a § potentia) are scaled in the same manner under a
the simplest manifestation of the geometrical phase or Berrfransformation of length scale. However, the quantization
phase[2,3]. Moreover, the two-dimensional quantum bil- breaks a scale invariance, and as a result, the strong coupling
liards with pointlike scatterers possess the properties of ulregion shifts with a logarithmic dependence of energy. The
traviolet divergences, scale anomaly, and asymptotic freesondition (1) also shows that, for any value of formal
dom which are analogous to the ones found in quantum fieldtrengthv , the system approaches to the empty billiard when
theoried 4]. Also, there is a problem of so-callechve chaos the energy increases. Thus the system possesses the property
[5,6]; through its wavelike nature, the quantum particle canof the asymptotic freedom.
be diffracted by pointlike scatterers, which should have no Quantum-mechanical billiard problems with pointlike
effect on the classical motion of the parti¢ie-9). scatterers inside can be defined for spatial dimendisr3.
A fundamental problem for quantum billiards with point- Contrary to the two-dimensional case, spectral properties in
like scatterers is to understand global behavior of the energthree dimensions have been scarcely studied so far. The main
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purpose of this paper is precisely to fill this void. The loga- V2 R .

rithmic energy dependence of the strong coupling region ob- o Pn(X)=Enen(x)  (n=1,2,3,...). 2
served in two dimensions has its origin in the energy inde-

pendence of the average level density of the system. Sindge impose the Dirichlet boundary condition to the wave
the level density is proportional to the square root of thefynctionse, at the billiard surface. The average level density
energy in three dimensions, one expects substantially differgt energyz has square-root energy dependence;

ent spectral properties. In this paper, we find that this is

indeed the case. It is shown that the value of formal strength M 32y
which induces the maximal coupling is independent of the pal2)= 2—1/?\/E 3

particle energy, whereas the width of the strip on which the

strong coupling is attained broadens with square-root depe%uppose that a single pointlike scatterer is pIaceﬁ%lﬁo

dence of energy. This means that, in three dimensions, fqf..: e ; N Ttar.
anyn (#0), the system exhibits chaotic spectra at the higﬁhs,lde the billiard. Despite the simplicity of a contact inter

L action, the Schidinger equation suffers from short-distance
energy limit.

S . . - ._singularities at the location of the scatterer, which needs to
Another objective of this paper is to relate the findings in

h | intlik h listic situati fbe renormalized. This can be done in most mathematically
the purely pointlike scatterers to the realistic situation Ofgayisfying fashion in the framework of the self-adjoint exten-

small but finite-size impurities. For the pointlike scatterers,g;q, theory of a symmetric operator in functional analysis.
the condition for the strong coupling also depends on theyetails are given elsewhefsee Ref[11]). We just present
mass scale\ which is introduced in the process of regular- the relevant results. Starting with the formulation of Zorbas
ization. This reflects the fact that formal strengtfdoes not  [17], we obtain the equation for the eigenvalues of the sys-
have a direct relation to the observables as it stands. In ordésm, z, (n=1,2,3,...), as

to clarify the physical meaning af , we begin by approxi-

mating a finite-range potential with & potential within a G(z2)=v "}, (4)
truncated basis. The size of the truncation depends on the

range of potential. We then obtain a relation between th&vhere

formal and bare strengths, the latter of which corresponds to

the strength of thed potential within the truncation. The _ * . 1 E,
relation enables us to apply the results for pointlike scatterers G(2)= 21 %(Xo)z(; t A
to finite-range cases. Moreover, it clarifies the proper proce- " A n

dure and physical meaning of the zero-size limit of the finite-In Eq. (4), 7 is the formal strength of the pointlike scatterer

size potential in an intuitive fashion. andA in Eq. (5) is an arbitrary mass scale that arises in the
The paper is organized as follows. In Sec. Il, we deduceygnormalization. The formal streng@ does not have a di-
from a general perspective without any assumption on thegct rejation to physical observables as it stands. Its relation
shape of billiards, the strong coupling condition in three-to physical strength of the scatterer is discussed later in Sec.
dimensional billiards under which the effect of a pointlike ||| Here we just mention the following two point§1) To
scatterer becomes substantial. In Sec. Ill, we consider thensure the self-adjointness of the Hamiltonian for the system
case for a small but finite-size scatterer. By examining ajefined by Eq(4), one has to take to be independent of the
relation between the formal strength of the scatterer and thenergy, and?2) in the limit of v —0, the system approaches
energy eigenstates of finite-size potential, we rewrite thehe empty billiard.
condition for the strong coupling in terms of the observables. The second term oB(z) in Eq. (5) is independent of the
The previously known results for one and two dimensionsenergyz. It plays an essential role in making the problem
are reviewed from the present point of view. We clarify theell-defined; the infinite series in E¢5) does not converge
proper procedure and meaning of the zero-size limit of finitewithout the second term. For spacial dimensibg4, the
size potential in one, two, and three dimensions. We test theummation in Eq(5) diverges. This reflects the fact that the
predictions in Sec. Il with the numerical calculations in Sec.billiard problem with pointlike scatterers is not well-defined
IV. We look at the level statistics of rectangular box with afor d=4 in quantum mechanics. Within any interval between
single pointlike scatterer inside. In particular, the case wher@yo neighboring unperturbed eigenvalue_s(,z) is a mono-
the scatterer is located at the center of the box is examined iﬂmnically decreasing function that ranges over the whole real
details. We summarize the present work in Sec. V. number. Therefore, Eq4) has a single solution on each
interval. The eigenfunction corresponding to an eigenvalue
z, is written in terms of Green'’s function of the empty bil-
Il. CONDITION FOR STRONG COUPLING liard as
IN TERMS OF FORMAL STRENGTH

. (5)

. . o eXo)
(0) 2 V=
Consider a quantum particle of mas4 moving in a ()= GT(X,X0:2n) kzl zn_Ek‘pk(X ' ©®
three-dimensional billiard of volumé. The eigenvalues and
eigenfunctions of this system are denotedBhyand ¢,(x);  This shows that if a perturbed eigenvalgeis close to an
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unperturbed on&,, (or E,, 1), then the corresponding eigen-

function ¢, is not substantially different frome, (or

¢n+1). Thus the disturbance by a pointlike scatterer is re-
stricted to eigenstates with an eigenvalue around which

G_(z) has an inflection point. This is because each inflection

point of G(z) is expected to appear, on average, aroun
the midpoint on the interval between two neighborin

unperturbed eigenvalues. Léz,G(z)) be one of such in-

flection points 0fG(z); z=(E,+Ep,;)/2 for somem.In

this case, the contributions o&(z) from the terms
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1 N E
F_E E?+A?

X p.(E)dE, (7)

G(2)=9(2)=(¢n(X0)2)P f:

QNhere we have defined a continuous funct@ﬁz) which

Ypehaves like an interpolation of the inflection points of

G(2). In Eq. (7), (on(X0)?) is the average value of
qon(io)2 among various. For a generic position of the scat-

with n=m cancel each other, and we can replace the sunerer, one hage,(x)?)=1N. Notice thatG(z2)=g(2) is
mation in Eq.(5) by a principal integral with a high degree valid only around the inflection points d&(z). Using an

of accuracy;

1 Jz+\E 1\F (E+\/2AE+A
—— + ——— | JEdE= VzIn|———=| - =/ =In| ————
J(Z—E E+A VEdE=\2 Vz—VE| 2 V2 \E-\2AE+A

\F r( /2E+1
— E arcta T

for z>0, we obtain

M 3/2A 1/2

G(z)=- o (9

The first term in Eq.(8), which depends on the energy

disappears both &=0 andE=. As a result, the average
value of G(z) at the inflection points is independent of the
energy. Equatio9) indicates that the maximal coupling of a
pointlike scatterer is attained with the formal strength

which satisfies

M 3/2Al/2
2

o=

(10

The “width” of the strong coupling region can be esti-
mated by considering a linearized eigenvalue equation. E

pandingG(z) aroundz, we can rewrite Eq(4) as
G(z)+G'(2)(z—2)=v " * (12
or

M 3/2A1/2
2

G (Z)(z—Z2)=v '+ (12)

In order to ensure that the perturbed eigenvalyés close to
Z, the range oft ~*+M3?AY%24 has to be restricted to

M3/2A1/2‘ A(E)
<=

—1
where the widthA is defined by
A(2)=[G'(2)|pad2) ™. (14

elementary indefinite integral

N [2E
arctal A 1 (8)

This is nothing but the variance of the IineariﬁT(jz) on the
interval between the two unperturbed eigenvalues just below
and abovez (see Fig. 1 The width can be estimated by the
average level density at the energy under consideration as
follows:

o > N\2
A2)=3 %paﬁ)‘l

[

> Zpav(E)_l
=(en(X)2) 2 =
(%o >n=1{<n—%>pav<z>-1}2

. _ M3/2 —
= 7 gn(X0)?) ek ) =51z V7. (15

"We have implicitly assumed in E@L5) that the unperturbed

eigenvalues are distributed with a mean intepvg{z) ~* in
the whole energy region. This assumption is quite satisfac-

tory, since the denominator d&’'(z) is of the order of
(z—E,)?, indicating that the summation in E¢l5) con-
verges rapidly.

We recognize from Eq$13) and(15) that the effects of a
pointlike scatterer of formal strengthare substantial only in
the eigenstates with eigenvaluesuch that

A(Z) MS/Z
< —_—

M 32 12
=z
2 2

2

U——l

(16)

The widthA is proportional to the average level density, and
as a result, it broadens with square-root energy dependence.
This can be understood from another perspective, by consid-
ering a scale transformation of a heuristic Hamiltonian with a
S potential;
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average level density in the low energy region. As a result,
G(z) the spectral property at low energy is expected to change

: : ' with the logarithmic energy-dependence which is specific to
two dimensiongsee Eq.(1)].

Ill. FORMAL, BARE, AND EFFECTIVE STRENGTHS

As stated in the previous section, in Eq. (4) does not
have a direct relation to physical observables as it stands.
The main purpose of this section is to clarify the physical
meaning of the formal strength. To this end, we relate the
formal strength to a strength defined through a more realistic
potential with small but finite range. The relation makes it
possible to apply the findings in the previous section to the
finite-size impurities. The previously published results in two
o dimensior11] and the well-known elementary results in one

FIG. 1. Typical behavior o5(z) with mass scale\=1 in Eq.  dimension are also reviewed from the present perspective.
(5) and its linearized version is shown as a functiorz.of he latter We first point out that the definition of the formal strength
is obtained by expandinG(z) at its inflection pointz on the in-  is not unique. Indeed, Eq5) is not a unique candidate for
tervalEn<z<Eq. . The coordinate of the inflection point is given G_(Z); it can be defined by any convergent series#@rE,,
by (z,G(Z))=((Em+Em+1)/2,—M3?27). Strong coupling is at-  which has a form
tained whenv ~ ! takes a value within the range of the linearized

function. _ N Xo)2
G(2)=lim 3 (‘P“E o +fn) (19
2 N—oo n=1 z En
H=— —— 40 8(X—Xo). (17)
2M ° Here, f,, is an arbitrary quantity independent of the energy

i 2 whereas it may depend, in generaI,E}nand%(io). The

first term in the parenthesis on the right-hand SigélS) in

Eq. (19) does not converge ad—< in spatial dimension
d=2, 3. This means thdt, should be taken as a counterterm
which cancels the divergence of the first term. Once such a

v2 Lo series{f,} is chosen, one can define an equatigﬁz)z v,
H—a?l — M +av 8(X—Xp) | (19 with an energy-independent constantThis gives a possible
eigenvalue equation for the billiard with a pointlike scatterer

Since the energy scales ag—a?z, the strengthy which of a certain fixedenergy-independentoupling strength. It
' is obvious that, even with another choice of series, say

scales ag —av must have square-root energy dependence,. _ )
which explains Eq(16). {fn}, the same eigenvalue equa’ELon can be reproduced by
The findings in this section are summarized as follows: shifting the value ofy by =,_,(f,—f,). One possible
(1) For a three-dimensional billiard, the effect of a point- choice off,, is given by
like scatterer on spectral properties is maximal when the for-
mal strength of the scatterer satisfies*=—M3?A Y27,
irrespective to the energy
(2) The widthA (or an allowable error i~ * to look for
the effec} increases with square-root energy dependence. with an arbitrary real numbeA (#0). This choice along
From these two, we conclude: with the definitionv =1/ gives precisely the original eigen-
(3) For any value of formal strengthv(®0), a pointlike  value problem Eqs(4) and (5). Clearly, thisv is a math-
scatterer tends to disturb a particle motion in billiards, as thematical quantity whose physical interpretation is not imme-
particle energy increases; the physical strength increases preiately evident.
portional to the square-root of the energy. This makes a To reveal the meaning of the formal strengthn Eq. (4),
sharp contrast to the asymptotic freedom observed in twowe begin by approximating low-energy specteigenvalues
dimensional billiards. and eigenfunctionsof a finite-range potential by that of a
Before closing this section, we give a few words on thezero-range interaction. Suppose that a small but finite-size
shape of the billiard. Our implicit assumption for the shape isscatterer of volumeQ is located atx=x, inside a three-
that the average level density of the empty billiard is domi-gimensional billiard of volume/. We describe the scatterer

nated by the volume term, which has a square-root depefy terms of a potential which has a constant strength on a
dence on energy. The assumption is justified for a genericegionQ;

three-dimensional billiard which has the same order of

length scale in each direction, irrespective to a full detail of Uo, xeQ

the shape of the billiard. If one length scale is substantially U(X)= ~ (22)
smaller than the other two, the surface term dominates the 0, xeV-Q,

Although the Hamiltoniar{17) is not well defined in case o
spatial dimensiord=2, we proceed further for the moment
and return to this point in Sec. Ill. Under a scale transforma

tion Xx—x/a, the Hamiltonian(17) is transformed to

R E,
fo=@n(X0)’ =23 (20)
nTEmT0l g2 A2
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where the regions of the potential and the outer billiard are In an analogy to the terminology of the field theories, we
denoted by the same symbols as the volumes. We assunsall the couplingy as thebare strengthsince it appears as
that the scatterer has the same order of size,Rsap each the coefficient of thes potential within a given truncation
spatial direction, and also assume that the volume of thgl8]. The bare strength can be related to formal strength
scatterer is substantially smaller than that of the outer bil;,~ a5 follows. Within the truncated basigen(X);
liard; Q=R3<V. In this case, the scatterer behaves as pomtn 1,2, ... N(Q)}, the eigenvalues of the Hamiltonidh?)
like at low energyz<Eyq), WhereEy ) is estimated as  zre determmed by

1 1
Eno= MRz = ma?® @2 '& en(X0)?
1
> v (24)
n=1 —Enp

Furthermore, the coupling of higher energy states than
En(o) to the low-energy states is weak, since wave functions
with wavelength shorter thaR oscillate within the scatterer. |nserting Eq.(24) into Eq. (4) with Eq. (5), we obtain
This means that the low-energy states<Ey)) can be
described by the Hamiltonian in terms oféapotential, Eq.

(17), with the coupling strength N

v 2 a0
=U,Q, (23 n=t n
. . . * 1
together witha basis truncated at fg). The truncation of + v 2( + 25
basis is crucial for the present argument. In case of spatial n=N(Q)+1 #nlXo) z-E, 2 A 23

dimensiond=2, a é potential is not well-defined in the full

unperturbed basis. This is clear from the fact that the sumE tion (25 ¢ relation bet ¢ | and
mation in Eq.(24) diverges in the limit ofQ—0 [hence as quation(25) gives an exact relation between formal an

N(Q)—o]. The finiteness of the scatterer introduces an ul- bare strengths. In order to have further insight on €4,
traviolet cutoff in a natural manner, and as a result, the lowWe take an average forpn(Xo)? among various n,
energy spectra can be reproduced by the Hamiltodah <¢n(x0)2> 1N, and replace the remaining summations on
within a suitably truncated basis. the RHS by integrals. We then have

T 1= 14 (n(Xo)? fEN(m—E E)dE+ fm ! E E)dE!. (26)
v T=U (en(X0)?) 0 E2+Azpav( Excon _E E2+A2 pal
Using Eqg.(3), along with elementary integrals
Pz, E)—f—dE fl —2\E, (z>0), 27
E+V2AE+A A 2E 2E
FR(E)= fﬁEdE 2J——— \ﬁ[arctarg \/—+1 +arctar€ \/——1)],
(& E— V2AE+A 2 A A
(28)
|
we can rewrite Eq(26) as serve in the summation in E4) [or Eq.(ig)] with oppo-
site sign. This ensures the convergencesgg) in Eq. (5).
T L e Using Eq.(22), we arrive at
e ¥ sFP(z, En)). (29
. . M 3/2A 1/2 21/2M
Y T} L (31

In Eq. (27), the first term on the RHS is negligible in case of

z<E. Hence, at low energg<E , we have . ,
9F=Enie) In order to reproduce a zero-range scatterer with a fixed

212 1232 formal strengthv (#0), the RHS of Eq(31) needs to con-
T SUNE M +2 M B (30)  Verge ad) shrinks. This means that, for sm&l, v should
2 N(Q)-
2T T take a form

The third term on the RHS in Eq30) diverges asEyq) _ . C
increases. This is exactly the same divergence which we ob- v()=1 WJF r@)]. (32)
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The first term in the denominator is a counterterm that can- A(z)
cels the divergence of the third term on the RHS in B4); Ir(0)|= - (39
21/2M
C=—n- (33)  Equation(39) shows that it is the inverse o{0) that repre-

sents a direct measure of coupling strength of the zero-size

[More preciselyC should be taken to cancel the divergencelimit of a scatterer. This naturally leads us to a definition of
which appears in the summation in E@4).] The remnant the effective strengtiof a pointlike scatterer by

quantityr (Q) in the denominator is a regular function which

converges a€)—0. In the zero-size limit, the finite-size ver=1/r(0). (40)
scatterer shrinks into a pointlike one with formal strength

Using the effective strength, we can rewrite Eq(39) as

M3/2Al/2
v l=r(0)— (34
27 . A(z)
. . . . |Ueff = . (41)
In terms of the potential heighd,, Eq. (32) is rewritten as 2
Uo(Q2)=1/(-CO?P+r(Q)Q) It can be observed from E¢34) that, if the origin ofy *

axis is shifted to the strong coupling valueM*?AY?/27,

— _ 2/3 =
=U=CATHT(0)0+0(Q)). (35) the formal strengthy is identical tov. We can also say
SinceC is positive, we obtain that v is a “distance” to the strong coupling value
' 1 U3 \hinh ic i .
v "=—C/Q™ which is, in general, a large negative quan-
v(Q)——0, tity for small Q2. Inserting Eqs(15), (23), and(33) into Eq.
Ug(Q)— —2, as(1—0. (36)  (38), we have
Equation(36) indicates that the potential has to be negative 1 212m \<|\/|3/2\/— 42
in the zero-size limit, irrespective to a form of(2). This is U + 77291/3\ = 932 = (42)

consistent with the fact that a pointlike scatterer with an ar-

bi.trr?ry for_mal stTength; l(laﬁO)h sustains a s.inglle (aligenztlate Equation (42) is the condition for the strong coupling in
with an eigenvalue smaller tham,. A seemingly plausible omg of the “observables;” at low energy where a finite-

limit, ) —0 along with keepindJo{) constant, is not allow-  gjze  scatterer can be approximated by a pointiike one
able in the case of three dimensions; such a limit induces to?z«l/MQm) a particle of massM moving in three-

strong a potential to define a quantum mechanical Hamil
tonian for a pointlike scatterer. Notice that E§6) does not
exclude a possibility of strong repulsidf,>0 on a small-

dimensional billiards is most strongly coupled to a finite-size
(=Q) scatterer of potential height, under the condition

; : (42). [As seen from the arguments above, the coefficients of
size region(2# 0. Indeed, Eq(32) [or Eqg. (35)] does not Q13 and Jz in Eq. (42) are not exact, but they are of the

impose any restriction on (or U) for anyfinite (). As Ion_g order of, or approximately, the values in H¢2).]
as{) is finite, one can reproduce even a strong repulsion by e effective strength of a pointlike scatterer can be de-

takingr (1) as slightly larger thac/ Q. Suchr(€) is, in fined in two dimensions in a similar manner. However, an

general, a very large positive quantity which diverges t0gnerqy dependent correction is needed in this dimension.

+o0 when () shrinks into the zero size together with posi- e ossible way to show this is to follow the arguments in

tively fixedUo. , the previous and present sections. Referdidg has taken

_ Combining the findings in the current and previous SeCyhis nath. Instead, we here take an alternative manner which
tions, we can deduce the condition for the strong coupling,yes it easy to understand the origin of the energy depen-
for a finite-size scatterer. Inserting EQO) or Eq.(31) into  gence specific to two dimensions. We begin by reexamining

Eq. (16), we obtain the condition for the strong coupling in three dimensions, Eq.
. 2112\ 312 A(2) (16), in terms _of thes potential with a truncated basis. We
v +T‘/EN(Q> 57 (37)  start by rewriting Eq(16) as
o i glal= 2, (43
T L) (39 _
Q 2 whereg(z) is defined in Eq(7). Recall that it behaves like

for z<Eyq, - Equation(38) indicates that ~1=—c/Q3js an interpolation of the infleition.points &(z) in Eq. (5).
the condition for the strong coupling, and hence that thelhe energy dependence of(z) is expected to be small.
effects of a finite-size scatterer at low energy most stronglyndeed, we haveg(z)=—M3%2AY227 from Eq. (9), irre-
appear when it is weakly attractive, namely, when the barespective to the energg. This indicates that Eq(43) is
strengthv is slightly negative. In the zero-size limit, the equivalent to the conditiofil6). Inserting Eqs(7) and (26)
condition(38) is equivalent to into the condition(43), we obtain



6838 T. SHIGEHARA AND TAKSU CHEON 55

0 (2P [ g

0 z—E

A(z) M
=— (44 v(Q)=1 (Eln(MAQ)H(Q), (51

This is the condition for the eigenvalue equation E#) ©0  \herer(Q) is a regular function which converges in the
have a solutiorz around some inflection point of the LHS in 74 gize limit,(0—0. The first term in the denominator en-

Eq. (24). Using Egs.(3) and(27), we have sures that the logarithmic divergence disappears in(EQ).
a2 Inserting Eqg.(51) into Eqg. (50), we obtain, in the zero-size
b1 o F(lg)(Z,EN(Q)) - A(Z)_ (45) limit, a two-dimensional analogue of E(39);
. o . . z| A
Equation(45) is identical to Eq.(37) for z<Ey(q). Notice r(0)— —InX =—. (52
thatF{*)(z,0)=0, namely, the lower bound does not contrib- 2m 2

ute on the principal integral.

Let us now consider a two-dimensional analogue of theThis indicates that one can define the effective strength of
finite-range potentia(21); it takes a constant valud, on a  the pointlike scatterer by
finite-size region of are& and zero everywhere else. The

bare strengthv is defined byv=UyQ as in three dimen- Mz
sions. Then, one can deduce an analogous formula to Eq. veﬁ(z)z1/ (r(O)——In ) (53
(44) in two dimensions. A crucial difference in two and three 27 A
dimensions lies in the energy dependence of the average
level density. For the billiard with are§, it is given by  Equation(52) now reads
pa=MS/27, according to Weyl's formula. Sincg,, is in-
dependent of energy in two dimensions, the analogue of Eq. A
(44) is estimated by |veﬁ(z)’1IS§. (54)
F?(z E)EJ € __pzE (46)
1A= z—E A Equation(54) with Eq. (53) embodies the logarithmic strip

of wave chaos that is the condition for the strong coupling in
instead of Eq(27). Using<<pn(>zo)2>=1/8 for a generic po-  two dimensions. By comparing this to E@.), we obtain
sition of the scatterer, we obtain

v 1=r(0). (55)

-1 M (2) (2) A
v ﬁ(Fl (z,En)) —F17(2,0) =3 (47) _ _
The effective strength¢ can be regarded as the direct mea-

sure of coupling strength of the scatterer, as in three dimen-

sions, and its inverse,.q , is a “distance” to a logarithmic

curve of the strong coupling limit. The logarithmic energy

= (48) dependence im . exhibits a specific feature in two dimen-
sions. It comes from nonvanishirfg{?)(z,0) which can be

regarded as the origin of scale anomaly in a formalistic
Here, the widthA is estimated in a similar manner as in Eq. sense. Equatiof61) shows

namely,

(15);
™ un—l/(MQ| MAQ)+r(Q)Q
AZWZ(‘Pn(XO)2>pav:T= (49) o(2)= 27 n( )+
MQ
which is independent of the energy The condition(48) is =1 2 IN(MAQ)+r(0)Q+0(Q) |.
identical to Eq.(51) in Ref.[11], apart from a minor change
in the definition of the widthA in the RHS. In two dimen- (56)

sion, F(lz)(z,O) does not vanish and indeed has a logarithmic

dependence on energy. This is the crucial difference from thelence we obtain
three-dimensional case. At low energy<Eyq)=1/MQ,

we have [U(Q)—>—O,

Ug(Q)— —o0, asQ—0. (57)

—1—M|5+| MAQ <é 50
v o Iy Find =7 (50

This is consistent with the fact that a pointlike scatterer sup-
Equation(50) indicates that a$) shrinks,v should behave ports a single eigenstate with an eigenvalue smaller than
like E,, irrespective to the value of formal strength(#0). The
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condition for the strong coupling in two dimensions is " T ; , ;

rewritten in a comparable form with experiment. In- 40 —

sertingv=UyQ) as well as Eq.(49 into Eq. (50), we

obtain 20 | N
! M In(zMQ ™ 58 e

RN — < —

U0 27 M) =5 (58) _QO\_
for z<1/MQ. An arbitrary mass scald disappears from 40 b |
Eq. (58). Similarly to the three-dimensional case, the effects ! ! s L !
of a finite-size scatterer at low energ% 1/M () appear most 0 10000 20000 30000 40000 50000 60000

strongly when it is weakly attractivigl1]. o

Our treatment is also applicable to one-dimensional case.
We end this section by showing that all the standard results FIG. 2. Plot of v~ 1= —M%¥%27+A(2)/2. The effects of a
in the elementary textbooks on quantum mechanics for ongointlike scatterer on the energy spectrum are expected to appear in
dimensionald function is recovered in our formalism. In one the eigenstates in the region between both curves.
dimension, one can define@potential(of strengthv) with
the full unperturbed basis. The summation on the LHS in Eg.

) . L : ) - o N

(249) is converggnt.m.the limit oN(Q)f»oo, since the aver v 1:veﬁ1: 1o z ﬁDn(Xo)zz—z- (64)

age level density is inversely proportional to square root of n=1 E,+A

energy;
12 In contrast to two and three dimensions, no divergent quan-

M™L 1 tity appears in the definition of effective coupling. In analo
Pak2)= STz = (59 Uty appearsinne defini , piing. o9y
NP to the similar situation in quantum field theories, one might

call this property of one-dimensional pointlike scatterer as
for one-dimensional billiards with width. The condition for ~ super-renormalizability A pointlike scatterer of bare
the strong coupling is given by an equation formally identi-strengthv is obtained as the zero-size limit of a finite-range
cal to Eq.(44); (Q) potential with heightJ,=v/Q in a natural manner. In
order to ensure #0, U, should behave like

»pal E) A(z)
—-1_ (X )2 P Pa dE| = , (60)
v = (en(X0)?) fo — 2 Uo(Q)=1/(r(Q)Q), (65)

where(¢,(Xp)2)=1/L and the width is given by
wherer (Q) is regular in the zero-size limit. Since no singu-

M2 1 lar term appears im(Q) ! at Q—0 limit, the usual zero-
A(z)zwz«pn(xo)z)pa\,:?z——. (61)  size limit, in which the productyyQ is kept constant, is
\/E attained by keeping({)) constant ad) varies. Thus one

obtains a pointlike object with the bare strength
The principal integral in Eq(60) can be estimated with the

use of
v=1/r(0). (66)
1 z
Fgl)(z,E)sf—dE:—m u (z>0). , »
(z—E)\JE Jz | Vz—E We may conclude from the current perspective that it is an
(62)  accidental fortune of super-renormalizability that has en-
abled the simple formulation of the one-dimensional Dirac
Since we havé={"(z,0)=F{!(z,0)=0, we get 8 function with a straightforward limiting procedure.
_q_A2)
lv Y= — (63) IV. NUMERICAL EXAMPLE

We have revealed, in Sec. I, the condition for the appear-
Therefore, in one dimension, the strong coupling with aance of the effects of a pointlike scatterer in three-
pointlike scatterer is reached when the bare strengtls  dimensional quantum billiards. It has been applied to the
large. The property is energy independentno low-energy spectrum in case of a small but finite-size scat-
scale anomaly Since the width becomes narrow as theterer in Sec. Ill. In this section, the predictions are confirmed
energy increases, the effect of a pointlike scatterer withby examining statistical properties of quantum spectrum. We
any (finite) bare strength disappears in the high energyrestrict ourselves to the exactly pointlike case. Even in this
limit. The bare strengthv is identical to the effective case, the numerical burden of handling very large number of
strengthv s in one dimension. They are related to the formalbasis states is quite heavy, and a smart trick is required to
strength by overcome it.
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We take a rectangular box as an outer billiard. We also . 8 nux _nymy nmz
assume the Dirichlet boundary condition such that wave @nn n.(X)=\/SSin sin sin
, ; ) xMynz Vv Iy ly I,
functions vanish on the boundary. The mass scale is set to

A=1 in the following. Fixing the value ofA makes all
parameters dimensionless. The eigenvalBgsand eigen- (nyny,n,;=123,..). (67b
functions <pn()2) in Eq. (5) are given by rearranging the
triple-indexed eigenvalues and eigenfunctions in ascendinghe mass of a particle and the side lengths of the billiard are
order of energy; assumed to beM=1/2 and (4,l,,l,)=(1.0471976,
5 5 5 1.1862737,0.8049826), respectively. In this choice of the
7T | [ Ny Ny n, side lengths, the volume of the billiardVs=1. We calculate
Ennn:_[(_) +(_ +(_ ]. (674 - .
iz 2M [ Iy ly I, G(2) on the interval betweek,, andE,. ; by

2

E m+ 2000
G=(ealio? [ gt g e EIOEE S eGo? oty
#nl%o E; z—E E°+1 Pa n= 72000()0“ 0 z—E, E;+1
FHen%0?) | ( b | pul EVE 69
@n(X et ez P :
mao Em-+2000 z-E E*+1)7°

Whenm< 2000, the first integral is discarded and the lowerof —M%2/27r+ A(2)/2 is 11.3 atz;505= 8303.96, and 25.7 at
bound of the summation is replaced oy 1 in Eq.(68). The  z;550742508.80, respectively. These values can be consid-
integral in Eq.(68) is easily calculated by using E(B). The  ered as the upper bound of ! for inducing a Wigner-like
approximation by Eq(68) serves to reduce numerical burden shape inP(S) at each energy region. With ! beyond the
considerably, keeping a sufficient numerical accuracy. bound, the system is not substantially different from the
For a moment, we restrict ourselves to the case where thempty billiard, and as a resulB(S) resembles the Poisson
scatterer is placed at the center of the billiard. In this casedistribution. In Fig. 5, the spectral rigiditgs(L) is shown
(on(X0)2) = @n(Xo)2=8N, which is eight times larger than for various values ob~*. The average is taken in the same
the average value for generic cases. However(H).is still  energy region as in Fig. 3. We can see the gradual shift to
valid, since only one-eighth of the whole unperturbed stateg?0isson statisticgdotted ling as v~ * increases. Beyond
namely, that with even parity in each direction are affectedv *=20, the value ofA5(L) is close to the Poisson predic-
by the scattererr(, n,,n,=1,3,5,...). Thesolid curves in tion, L/15. There still exists an appreciable difference from
Fig. 2 represent 1= — M¥%27+ A(2)/2. According to the  random-matrix predictior(solid line) even for the strong-
condition (16) (with A=1), the effects of a pointlike scat- coupling limit (v 1=—-M%¥%27=0).
terer are expected to appear mainly in the eigenstates in thfe similar tendency has been reported in two-dimensional
region between both curves. This is in fact the case as olgases[10]. This can be understood from the fact that the
served in Figs. 3 and 4, where the nearest-neighbor levébnge of thenth perturbed eigenvalue is restricted to the
spacing distributionP(S) is displayed for various non- region betweemth and i+ 1)th unperturbed ones in case
negative values 6 ! in two energy regionsz;po~2z3100in~ Of @ single pointlike scatterer. As a result, the number of
Fig. 3 andz;7005~ Z2000o IN Fig. 4, respectively. We have perturbed eigenstates on a certain energy interval does not
numerically confirmed that the sign reversionwof* does differ largely from the number of unperturbed ones in the
not change the qualitative behavior of the distribution in bothsame region. This restriction does not apply to the case of
energy regions. Figures 3 and 4 show that the case dhultiple number of pointlike scatterers. We can therefore
v l=—M3¥Y2+-=—-0.056269769-0 is closest to the expectthatthe increase of the number of scatterers makes the
Wigner distribution(solid line). It is numerically observed energy spectrum more rigid. For two-dimensional rectangu-
that the second moment ofP(S) is given by lar billiard, a recent calculation corroborate this argument
JeP(9)S?dS=1.5 for v~ 1=0, irrespective to the energy. [4]. o
This indicates thaP(S) is Wigner-like in the whole energy ~ Up to now, we have placed a pointlike scatterer at a spe-
region forv 1= —M3¥%27. Asv~ ! increasesP(S) tends to  Cific position, namely, the center of the rectangular box. We
approach the Poisson distributi¢tiotted ling. However, its ~ Next show the level statistics for the case of a generic loca-
rate depends on the energy. WhitéS) becomes intermedi- tion for the pointlike scatterer. In Fig. 6, we show the
ate in shape between the Poisson and Wigner distributions &¢arest-neighbor level spacing distributigiS) for a box
v 1=10in Fig. 3, such distribution appears@t !=30in  with a scatterer located ak,=(0.5129731,0.5489658,
Fig. 4. This can be easily understood from Fig. 2; the valug.3342914). The formal coupling is chosen to e'=0.
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Although a nearly maximal coupling is expected to be at-can be understood as follows. Define the width for title
tained with this value o 1, the level repulsion is rather state by

weak and the observed(S) is considerably different from .

the Wigner distribution. This can be understood by consid- An(2)=70n(X0)*pad 2) (69)
ering the state dependence@a‘(io)z. In case that the scat-

terer is placed at the center, the value\p(,:m_(’o)2 is indepen-
dent of the unperturbed states;(xo)2=8/\ for even parit N ; S .
states in eachp direction. Theii?(er?gures a smooth Ehagge gFnerncxo. Since |t§ average Is given ay(2), it frequently

— L . . occurs thatA,(z) is substantially smaller thar(z) for
the valu<_a ofG(_z_) at the successive inflection points. For successiven. This also explains why the coupling of
a generic position of the scatterer, however, the valug,e nointiike scatterer is rather weak for the generic case.
of ¢n(X0)? changes nearly at random asvaries, causing [For the case that the scatterer is located at the center,
a considerable fluctuation of the inflection points®€z). @ we have A,(z)=A(z), irrespective to the unperturbed
As a result, it frequently happens that successive unstates] Clearly, a successive existence of the eigenstates un-
perturbed states are not substantially affected by the scatteraffected by the scatterer is a specific feature of a single-
even with the strong coupling value of the formal strength. ltscatterer case. As the number of scatterers increases, such
should be also noticed that, for the generic position of thdendency disappears because only in very rare occurrence,
scatterer, the width of strong coupling is substantiallynone of the scatterers has a substantial influence on
smaller than its average estimate given in E6). This  successive unperturbed eigenstates, as long as the coupling

with z=z,=E,,. Since<,on(>?0)2 ranges from O to & asn
varies, the width\ ,(z) fluctuates between 0 and\§z) for a
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strength of each scatterer satisfies the conditi@. Again,  about wave chaos under the predicted condition, although the
for two-dimensional cases, numerical results support this agprecise amount of the effect depends on the location of the
sertion[4]. scatterer.
Since the condition for wave chaos, EG6) is described
in terms of the formal strength of the pointlike scatterer, it
is not directly applicable to the case for realistic finite-size
To conclude the paper, we summarize the findings in thémpurities. For this in mind, we have examined a relation
previous sections. Equatiafi6) in Sec. Il is precisely the between formal strength of the pointlike scatterer and the
necessary condition for the appearance of wave chaos fdrare strengtly of the finite-size potential which is defined in
three-dimensional pseudointegrable billiards with pointlikea natural way as the product of height and volume of the
scatterers. The condition is essentially different from that forconstant potential on a finite-size region. The relation be-
two dimensions. Whereas it is described by a logarithmicalljween v and v also makes clear how one should take a
energy-dependent strip with an energy-independent width izero-size limit to obtain a pointlike object with a given for-
two dimensions, it is characterized by a parabola with a symmal strength. It is shown that™* has an inverse cubic-root
metric axis parallel to the energy axis in three dimensionsdivergence inQ)—0 limit in three dimension. It is also
This implies that in three-dimensional billiards, the effect of shown that one can use a regular parvof [r(Q) in Eq.
the pointlike scatterer is stronger in the higher energy region32)] as a direct measure of the coupling strength of a small
The numerical experiments using the rectangular box conscatterer. In other words, the inverse of the regular part cor-
firm the assertion that even a single pointlike scatterer bringsesponds to the effective strength of the scatterer. Since the

V. CONCLUSION
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FIG. 5. The spectral rigidityA3(L) is shown for various values
of v ! in the energy region betweerz;,=1307.95 and FIG. 6. The nearest-neighbor level spacing distribui{®) is
Z3100= 12932.70. The scatterer is located at the center of the bilshown forv ~*=0 in case of the scatterer being located at a generic
liard. The solid (dotted line is the prediction of random-matrix position in the rectangular solid. The statistics are taken within the
(Poisson statistics. eigenvalues between,q;=415.81 andzs,q—3503.68. The solid
(dotted line is the WignenPoisson distribution.

coefficient of the singular part of ' is negative, wave our examples to the generic case. This becomes evident by
chaos is expected to appear at low energy in case of weatonsidering the fact that infinite numbers of obstacle are
attraction. needed to simulate a given boundary shape at short wave
We have reviewed the previously known results in twolength.

dimensions from the present perspective. Similarly to the In a sense, the current work amounts to the search of a
three dimensional case, the inverse of the bare couplingensible zero-size limit of small obstacles in the quantum
v ! has to contain a singularity as a function of the size ofmechanics of general spatial dimension. Apart from the case
the scatterer, and the regular partvof! plays a central role  Of one dimension, where super-renormalizability guarantees
in determining the effective coupling strength. There is athe existence of trivial limit § function), one encounters a
crucial difference, however. In two dimensions, a logarith-Subtle balance of divergence and renormalizability, which

mically energy-dependent correction term is required to def€Sults in nontrivial properties of coupling strengths. We
fine the effective strength. The existence of the energyllOP€ that we have persuaded the readers that the model of
dependent term results in a peculiar feature for twothe billiards with pointlike scatterer is a valid, mathemati-
dimensions, namely, the scale anomaly. Its origin is identically sound, and practically useful idealization of the quan-
fied as thez dependence d 2 (z,E=0) in Eq.(46) for two tum system W|th small impurities. We also hope that the
dimensions. There is no corresponding term for thieeed prefmctlons_m this paper are to be chgcked through the ex-
ong dimensions periments in the laboratories. In particular, E¢42) and

A few words on the relevance of our results to the billiard (8 for three and wo dimensions, respectively, can be di-

problem with more generic boundary shapes are in order. B ctly tested, since they are stated in an experimentally con-
placing small obstacles along the boundary and around th (_)IIabIe form. Recen_t progress of microwave techniques
edges of the rectangular billiard considered here, one caW.'th macroscopic devicegd9-27 offers a possible opportu-
construct systems which approxiamte billiards of various"""

bqundary _shgpes. Therefore, frorr_l our rather specia] example ACKNOWLEDGMENTS

with a pointlike scatterer, we might hope to obtain some

insight into the generic quantum billiard problem both intwo  Numerical computations have been performed on the
and three dimensions. At the same time, extreme care has WITAC MP5800 and S-3800 computers at the Computer
be taken when one deals with the high energy limit andCentre, the University of Tokyo. We thank Professor Izumi
discuss the relevance of the asymptotic behaviors found iftsutsui for helpful discussions.
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