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Spectral properties of three-dimensional quantum billiards with a pointlike scatterer
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We examine the spectral properties of three-dimensional quantum billiards with a single pointlike scatterer
inside. It is found that the spectrum shows chaotic~random-matrix-like! characteristics when the inverse of the
formal strengthv̄21 is within a band whose width increases parabolically as a function of the energy. This
implies that the spectrum becomes random-matrix-like at very high energy irrespective to the value of the
formal strength. The predictions are confirmed by numerical experiments with a rectangular box. The findings
for a pointlike scatterer are applied to the case for a small but finite-size impurity. We clarify the proper
procedure for its zero-size limit which involves nontrivial divergence. The previously known results in one-
and two-dimensional quantum billiards with small impurities inside are also reviewed from the present per-
spective.@S1063-651X~97!15606-9#

PACS number~s!: 05.45.1b, 03.65.2w
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I. INTRODUCTION

The quantum billiard with pointlike scatterers inside is
solvable model which still retains most of the interesti
characteristics of nonintegrable quantum physics. The p
lem is based on obvious physical motivations. The billiard
a natural idealization of the particle motion in bounded s
tems. The one-electron problem in quantum dots is a p
sible setting which may be used as a single-electron mem
a promising computational device in the future. It is no
possible to actually construct such structures with extrem
pure semiconductors thanks to the rapid progress in the
soscopic technology. However, real systems are not
from impurities which affect the electron motion inside.
the presence of a small amount of contamination, eve
single-electron problem in bounded regions becomes unm
ageable. The modeling of the impurities with pointlike sc
terers is expected to make the problem easy to handle w
out changing essential physics, at least at low energy.

In spite of its seeming simplicity, the billiard problem
with pointlike scatterers is known to possess several n
trivial properties. In two-dimensional billiards with a sing
pointlike scatterer, one observes phase reversion of w
function with the adiabatic rotation of the scatterer arou
certain points inside the billiard@1#. This can be regarded a
the simplest manifestation of the geometrical phase or B
phase@2,3#. Moreover, the two-dimensional quantum b
liards with pointlike scatterers possess the properties of
traviolet divergences, scale anomaly, and asymptotic f
dom which are analogous to the ones found in quantum fi
theories@4#. Also, there is a problem of so-calledwave chaos
@5,6#; through its wavelike nature, the quantum particle c
be diffracted by pointlike scatterers, which should have
effect on the classical motion of the particle@7–9#.

A fundamental problem for quantum billiards with poin
like scatterers is to understand global behavior of the ene
551063-651X/97/55~6!/6832~13!/$10.00
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spectrum in the parameter space of particle energyz and the
strength of the scatterersv̄ . In particular, statistical proper
ties of the spectrum are important because they reflect
degree of complexity~regularity or chaos! of underlying dy-
namics. For two dimensions, the problem has already b
examined in detail@10,11#. The chaotic spectrum~level sta-
tistics of random-matrix theory@12–14#! appears along the
‘‘logarithmic strip’’ in the parameter space (z, v̄21). More
precisely, the effects of a pointlike scatterer with form
strengthv̄ are most strongly observed in the eigenstates w
an eigenvaluez such that

M

2p
ln
z

L
. v̄21, ~1!

whereM is the mass of a particle moving in the billiard an
L is an arbitrary mass scale. Equation~1! indicates that the
maximal physical coupling is attained at the value of form
coupling that varies with the logarithmic dependence of
particle energy. This energy dependence is a manifestatio
a phenomenon known as the scale anomaly, or the quan
mechanical breaking of scale invariance@15,16#: In two di-
mension, the physics is expected to be energy independ
since the kinetic term~Laplacian! and the zero-range inter
action~a d potential! are scaled in the same manner unde
transformation of length scale. However, the quantizat
breaks a scale invariance, and as a result, the strong cou
region shifts with a logarithmic dependence of energy. T
condition ~1! also shows that, for any value of forma
strengthv̄ , the system approaches to the empty billiard wh
the energy increases. Thus the system possesses the pro
of the asymptotic freedom.

Quantum-mechanical billiard problems with pointlik
scatterers inside can be defined for spatial dimensiond<3.
Contrary to the two-dimensional case, spectral propertie
three dimensions have been scarcely studied so far. The m
6832 © 1997 The American Physical Society
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55 6833SPECTRAL PROPERTIES OF THREE-DIMENSIONAL . . .
purpose of this paper is precisely to fill this void. The log
rithmic energy dependence of the strong coupling region
served in two dimensions has its origin in the energy in
pendence of the average level density of the system. S
the level density is proportional to the square root of
energy in three dimensions, one expects substantially dif
ent spectral properties. In this paper, we find that this
indeed the case. It is shown that the value of formal stren
which induces the maximal coupling is independent of
particle energy, whereas the width of the strip on which
strong coupling is attained broadens with square-root dep
dence of energy. This means that, in three dimensions,
any v̄ (Þ0), the system exhibits chaotic spectra at the h
energy limit.

Another objective of this paper is to relate the findings
the purely pointlike scatterers to the realistic situation
small but finite-size impurities. For the pointlike scattere
the condition for the strong coupling also depends on
mass scaleL which is introduced in the process of regula
ization. This reflects the fact that formal strengthv̄ does not
have a direct relation to the observables as it stands. In o
to clarify the physical meaning ofv̄ , we begin by approxi-
mating a finite-range potential with ad potential within a
truncated basis. The size of the truncation depends on
range of potential. We then obtain a relation between
formal and bare strengths, the latter of which correspond
the strength of thed potential within the truncation. The
relation enables us to apply the results for pointlike scatte
to finite-range cases. Moreover, it clarifies the proper pro
dure and physical meaning of the zero-size limit of the fini
size potential in an intuitive fashion.

The paper is organized as follows. In Sec. II, we dedu
from a general perspective without any assumption on
shape of billiards, the strong coupling condition in thre
dimensional billiards under which the effect of a pointlik
scatterer becomes substantial. In Sec. III, we consider
case for a small but finite-size scatterer. By examining
relation between the formal strength of the scatterer and
energy eigenstates of finite-size potential, we rewrite
condition for the strong coupling in terms of the observabl
The previously known results for one and two dimensio
are reviewed from the present point of view. We clarify t
proper procedure and meaning of the zero-size limit of fin
size potential in one, two, and three dimensions. We test
predictions in Sec. II with the numerical calculations in S
IV. We look at the level statistics of rectangular box with
single pointlike scatterer inside. In particular, the case wh
the scatterer is located at the center of the box is examine
details. We summarize the present work in Sec. V.

II. CONDITION FOR STRONG COUPLING
IN TERMS OF FORMAL STRENGTH

Consider a quantum particle of massM moving in a
three-dimensional billiard of volumeV. The eigenvalues and

eigenfunctions of this system are denoted byEn andwn(xW );
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2M
wn~xW !5Enwn~xW ! ~n51,2,3, . . .!. ~2!

We impose the Dirichlet boundary condition to the wa
functionswn at the billiard surface. The average level dens
at energyz has square-root energy dependence;

rav~z!5
M3/2V

21/2p2Az. ~3!

Suppose that a single pointlike scatterer is placed atxW5xW0
inside the billiard. Despite the simplicity of a contact inte
action, the Schro¨dinger equation suffers from short-distan
singularities at the location of the scatterer, which needs
be renormalized. This can be done in most mathematic
satisfying fashion in the framework of the self-adjoint exte
sion theory of a symmetric operator in functional analys
Details are given elsewhere~see Ref.@11#!. We just present
the relevant results. Starting with the formulation of Zorb
@17#, we obtain the equation for the eigenvalues of the s
tem,zn (n51,2,3,. . . ), as

Ḡ~z!5 v̄21, ~4!

where

Ḡ~z![ (
n51

`

wn~xW0!
2S 1

z2En
1

En

En
21L2D . ~5!

In Eq. ~4!, v̄ is the formal strength of the pointlike scatter
andL in Eq. ~5! is an arbitrary mass scale that arises in t
renormalization. The formal strengthv̄ does not have a di-
rect relation to physical observables as it stands. Its rela
to physical strength of the scatterer is discussed later in S
III. Here we just mention the following two points:~1! To
ensure the self-adjointness of the Hamiltonian for the sys
defined by Eq.~4!, one has to takev̄ to be independent of the
energy, and~2! in the limit of v̄→0, the system approache
the empty billiard.

The second term ofḠ(z) in Eq. ~5! is independent of the
energyz. It plays an essential role in making the proble
well-defined; the infinite series in Eq.~5! does not converge
without the second term. For spacial dimensiond>4, the
summation in Eq.~5! diverges. This reflects the fact that th
billiard problem with pointlike scatterers is not well-define
for d>4 in quantum mechanics. Within any interval betwe
two neighboring unperturbed eigenvalues,Ḡ(z) is a mono-
tonically decreasing function that ranges over the whole r
number. Therefore, Eq.~4! has a single solution on eac
interval. The eigenfunction corresponding to an eigenva
zn is written in terms of Green’s function of the empty bi
liard as

cn~xW !}G~0!~xW ,xW0 ;zn!5 (
k51

`
wk~xW0!

zn2Ek
wk~xW !. ~6!

This shows that if a perturbed eigenvaluezn is close to an
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unperturbed oneEn ~or En11), then the corresponding eigen
function cn is not substantially different fromwn ~or
wn11). Thus the disturbance by a pointlike scatterer is
stricted to eigenstates with an eigenvalue around wh
Ḡ(z) has an inflection point. This is because each inflect
point of Ḡ(z) is expected to appear, on average, arou
the midpoint on the interval between two neighbori
unperturbed eigenvalues. Let„ z̃ ,Ḡ( z̃)… be one of such in-
flection points ofḠ(z); z̃.(Em1Em11)/2 for somem. In
this case, the contributions onḠ( z̃) from the terms
with n.m cancel each other, and we can replace the s
mation in Eq.~5! by a principal integral with a high degre
of accuracy;
e
e
a

i-
E

-
h
n
d

-

Ḡ~ z̃ !. ḡ~ z̃ ![^wn~xW0!
2&PE

0

`S 1

z̃2E
1

E

E21L2D
3rav~E!dE, ~7!

where we have defined a continuous functionḡ (z) which
behaves like an interpolation of the inflection points
Ḡ(z). In Eq. ~7!, ^wn(xW0)

2& is the average value o
wn(xW0)

2 among variousn. For a generic position of the sca
terer, one haŝwn(xW0)

2&.1/V. Notice thatḠ(z). ḡ (z) is
valid only around the inflection points ofḠ(z). Using an
elementary indefinite integral
E S 1

z2E
1

E

E21L2DAEdE5AzlnUAz1AE
Az2AEU2

1

2
AL

2
lnS E1A2LE1L

E2A2LE1L
D

2AL

2 H arctanSA2E

L
11D 1arctanSA2E

L
21D J ~8!
low
e
as

ac-

nd
nce.
sid-
a

for z.0, we obtain

Ḡ~ z̃ !.2
M3/2L1/2

2p
. ~9!

The first term in Eq.~8!, which depends on the energyz,
disappears both atE50 andE5`. As a result, the averag
value of Ḡ(z) at the inflection points is independent of th
energy. Equation~9! indicates that the maximal coupling of
pointlike scatterer is attained with the formal strengthv̄
which satisfies

v̄21.2
M3/2L1/2

2p
. ~10!

The ‘‘width’’ of the strong coupling region can be est
mated by considering a linearized eigenvalue equation.
pandingḠ(z) around z̃ , we can rewrite Eq.~4! as

Ḡ~ z̃ !1Ḡ8~ z̃ !~z2 z̃ !. v̄21 ~11!

or

Ḡ8~ z̃ !~z2 z̃ !. v̄211
M3/2L1/2

2p
. ~12!

In order to ensure that the perturbed eigenvaluezm is close to
z̃ , the range ofv̄211M3/2L1/2/2p has to be restricted to

U v̄211
M3/2L1/2

2p U& D~ z̃ !

2
, ~13!

where the widthD is defined by

D~ z̃ ![uḠ8~ z̃ !urav~ z̃ !21. ~14!
x-

This is nothing but the variance of the linearizedḠ(z) on the
interval between the two unperturbed eigenvalues just be
and abovez̃ ~see Fig. 1!. The width can be estimated by th
average level density at the energy under consideration
follows:

D~ z̃ !5 (
n51

`
wn~xW0!

2

~ z̃2En!
2
rav~ z̃ !21

.^wn~xW0!
2& (

n51

`
2rav~ z̃ !21

$~n2 1
2 !rav~ z̃ !21%2

5p2^wn~xW0!
2&rav~ z̃ !.

M3/2

21/2
A z̃ . ~15!

We have implicitly assumed in Eq.~15! that the unperturbed
eigenvalues are distributed with a mean intervalrav( z̃)

21 in
the whole energy region. This assumption is quite satisf
tory, since the denominator ofḠ8(z) is of the order of
(z2En)

2, indicating that the summation in Eq.~15! con-
verges rapidly.

We recognize from Eqs.~13! and~15! that the effects of a
pointlike scatterer of formal strengthv̄ are substantial only in
the eigenstates with eigenvaluesz such that

U v̄211
M3/2L1/2

2p U& D~z!

2
.
M3/2

23/2
Az. ~16!

The widthD is proportional to the average level density, a
as a result, it broadens with square-root energy depende
This can be understood from another perspective, by con
ering a scale transformation of a heuristic Hamiltonian with
d potential;
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H52
¹2

2M
1vd~xW2xW0!. ~17!

Although the Hamiltonian~17! is not well defined in case o
spatial dimensiond>2, we proceed further for the momen
and return to this point in Sec. III. Under a scale transform
tion xW→xW /a, the Hamiltonian~17! is transformed to

H→a2S 2
¹2

2M
1avd~xW2xW0! D . ~18!

Since the energyz scales asz→a2z, the strengthv which
scales asv→av must have square-root energy dependen
which explains Eq.~16!.

The findings in this section are summarized as follows
~1! For a three-dimensional billiard, the effect of a poin

like scatterer on spectral properties is maximal when the
mal strength of the scatterer satisfiesv̄21.2M3/2L1/2/2p,
irrespective to the energyz.

~2! The widthD ~or an allowable error inv̄21 to look for
the effect! increases with square-root energy dependence

From these two, we conclude:
~3! For any value of formal strength (v̄Þ0), a pointlike

scatterer tends to disturb a particle motion in billiards, as
particle energy increases; the physical strength increases
portional to the square-root of the energy. This make
sharp contrast to the asymptotic freedom observed in t
dimensional billiards.

Before closing this section, we give a few words on t
shape of the billiard. Our implicit assumption for the shape
that the average level density of the empty billiard is dom
nated by the volume term, which has a square-root dep
dence on energy. The assumption is justified for a gen
three-dimensional billiard which has the same order
length scale in each direction, irrespective to a full detail
the shape of the billiard. If one length scale is substantia
smaller than the other two, the surface term dominates

FIG. 1. Typical behavior ofḠ(z) with mass scaleL51 in Eq.
~5! and its linearized version is shown as a function ofz. The latter

is obtained by expandingḠ(z) at its inflection pointz̃ on the in-
tervalEm,z,Em11. The coordinate of the inflection point is give

by „ z̃ ,Ḡ( z̃)….„(Em1Em11)/2,2M3/2/2p…. Strong coupling is at-
tained whenv̄21 takes a value within the range of the lineariz
function.
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average level density in the low energy region. As a res
the spectral property at low energy is expected to cha
with the logarithmic energy-dependence which is specific
two dimensions@see Eq.~1!#.

III. FORMAL, BARE, AND EFFECTIVE STRENGTHS

As stated in the previous section,v̄ in Eq. ~4! does not
have a direct relation to physical observables as it stan
The main purpose of this section is to clarify the physic
meaning of the formal strengthv̄ . To this end, we relate the
formal strength to a strength defined through a more reali
potential with small but finite range. The relation makes
possible to apply the findings in the previous section to
finite-size impurities. The previously published results in tw
dimension@11# and the well-known elementary results in on
dimension are also reviewed from the present perspectiv

We first point out that the definition of the formal streng
is not unique. Indeed, Eq.~5! is not a unique candidate fo
Ḡ(z); it can be defined by any convergent series forzÞEn
which has a form

Ḡ~z!5 lim
N→`

(
n51

N S wn~xW0!
2

z2En
1 f nD . ~19!

Here, f n is an arbitrary quantity independent of the ener
z, whereas it may depend, in general, onEn andwn(xW0). The
first term in the parenthesis on the right-hand side~RHS! in
Eq. ~19! does not converge asN→` in spatial dimension
d52, 3. This means thatf n should be taken as a counterter
which cancels the divergence of the first term. Once suc
series$ f n% is chosen, one can define an equation,Ḡ(z)5g,
with an energy-independent constantg. This gives a possible
eigenvalue equation for the billiard with a pointlike scatte
of a certain fixed~energy-independent! coupling strength. It
is obvious that, even with another choice of series,

$ f̃ n%, the same eigenvalue equation can be reproduced
shifting the value ofg by (n51

` ( f̃ n2 f n). One possible
choice of f n is given by

f n5wn~xW0!
2

En

En
21L2 ~20!

with an arbitrary real numberL (Þ0). This choice along
with the definitionv̄[1/g gives precisely the original eigen
value problem Eqs.~4! and ~5!. Clearly, this v̄ is a math-
ematical quantity whose physical interpretation is not imm
diately evident.

To reveal the meaning of the formal strengthv̄ in Eq. ~4!,
we begin by approximating low-energy spectra~eigenvalues
and eigenfunctions! of a finite-range potential by that of
zero-range interaction. Suppose that a small but finite-s
scatterer of volumeV is located atxW5xW0 inside a three-
dimensional billiard of volumeV. We describe the scattere
in terms of a potential which has a constant strength o
regionV;

U~xW !5HU0 , xWPV

0, xWPV2V,
~21!
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where the regions of the potential and the outer billiard
denoted by the same symbols as the volumes. We ass
that the scatterer has the same order of size, sayR, in each
spatial direction, and also assume that the volume of
scatterer is substantially smaller than that of the outer
liard; V.R3!V. In this case, the scatterer behaves as po
like at low energyz!EN(V) , whereEN(V) is estimated as

EN~V!.
1

MR2 .
1

MV2/3. ~22!

Furthermore, the coupling of higher energy states th
EN(V) to the low-energy states is weak, since wave functio
with wavelength shorter thanR oscillate within the scatterer
This means that the low-energy states (z!EN(V)) can be
described by the Hamiltonian in terms of ad potential, Eq.
~17!, with the coupling strength

v[U0V, ~23!

together witha basis truncated at EN(V) . The truncation of
basis is crucial for the present argument. In case of spa
dimensiond>2, ad potential is not well-defined in the ful
unperturbed basis. This is clear from the fact that the su
mation in Eq.~24! diverges in the limit ofV→0 @hence as
N(V)→`#. The finiteness of the scatterer introduces an
traviolet cutoff in a natural manner, and as a result, the lo
energy spectra can be reproduced by the Hamiltonian~17!
within a suitably truncated basis.
of

o

e
me

e
l-
t-

n
s

ial

-

l-
-

In an analogy to the terminology of the field theories, w
call the couplingv as thebare strength, since it appears as
the coefficient of thed potential within a given truncation
@18#. The bare strengthv can be related to formal strengt

v̄ as follows. Within the truncated basis$wn(xW );
n51,2, . . . ,N(V)%, the eigenvalues of the Hamiltonian~17!
are determined by

(
n51

N~V!
wn~xW0!

2

z2En
5v21. ~24!

Inserting Eq.~24! into Eq. ~4! with Eq. ~5!, we obtain

v̄215v211 (
n51

N~V!

wn~xW0!
2

En

En
21L2

1 (
n5N~V!11

`

wn~xW0!
2S 1

z2En
1

En

En
21L2D . ~25!

Equation ~25! gives an exact relation between formal a
bare strengths. In order to have further insight on Eq.~25!,
we take an average forwn(xW0)

2 among various n,

^wn(xW0)
2&.1/V, and replace the remaining summations

the RHS by integrals. We then have
v̄21.v211^wn~xW0!
2&H E

0

EN~V! E

E21L2 rav~E!dE1E
EN~V!

` S 1

z2E
1

E

E21L2D rav~E!dEJ . ~26!

Using Eq.~3!, along with elementary integrals

F1
~3!~z,E![E AE

z2E
dE5AzlnUAz1AE

Az2AEU22AE, ~z.0!, ~27!

F2
~3!~E![E E

E21L2AEdE52AE2
1

2
AL

2
lnS E1A2LE1L

E2A2LE1L
D 2AL

2 H arctanSA2E

L
11D 1arctanSA2E

L
21D J ,

~28!
xed
we can rewrite Eq.~26! as

v̄21.v212
M3/2L1/2

2p
2

M3/2

21/2p2F1
~3!~z,EN~V!!. ~29!

In Eq. ~27!, the first term on the RHS is negligible in case
z!E. Hence, at low energyz!EN(V) , we have

v̄21.v212
M3/2L1/2

2p
1
21/2M3/2

p2 AEN~V!. ~30!

The third term on the RHS in Eq.~30! diverges asEN(V)
increases. This is exactly the same divergence which we
 b-

serve in the summation in Eq.~24! @or Eq. ~19!# with oppo-
site sign. This ensures the convergence ofḠ(z) in Eq. ~5!.
Using Eq.~22!, we arrive at

v̄21.v212
M3/2L1/2

2p
1
21/2M

p2V1/3. ~31!

In order to reproduce a zero-range scatterer with a fi
formal strengthv̄ (Þ0), the RHS of Eq.~31! needs to con-
verge asV shrinks. This means that, for smallV, v should
take a form

v~V!51Y S 2
C

V1/31r ~V! D . ~32!
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The first term in the denominator is a counterterm that c
cels the divergence of the third term on the RHS in Eq.~31!;

C.
21/2M

p2 . ~33!

@More precisely,C should be taken to cancel the divergen
which appears in the summation in Eq.~24!.# The remnant
quantityr (V) in the denominator is a regular function whic
converges asV→0. In the zero-size limit, the finite-siz
scatterer shrinks into a pointlike one with formal strength

v̄21.r ~0!2
M3/2L1/2

2p
. ~34!

In terms of the potential heightU0, Eq. ~32! is rewritten as

U0~V!51/„2CV2/31r ~V!V…

51/„2CV2/31r ~0!V1o~V!…. ~35!

SinceC is positive, we obtain

H v~V!→20,

U0~V!→2`,
asV→0. ~36!

Equation~36! indicates that the potential has to be negat
in the zero-size limit, irrespective to a form ofr (V). This is
consistent with the fact that a pointlike scatterer with an
bitrary formal strengthv̄ (Þ0) sustains a single eigensta
with an eigenvalue smaller thanE1. A seemingly plausible
limit, V→0 along with keepingU0V constant, is not allow-
able in the case of three dimensions; such a limit induces
strong a potential to define a quantum mechanical Ham
tonian for a pointlike scatterer. Notice that Eq.~36! does not
exclude a possibility of strong repulsionU0@0 on a small-
size regionVÞ0. Indeed, Eq.~32! @or Eq. ~35!# does not
impose any restriction onv ~or U) for anyfiniteV. As long
asV is finite, one can reproduce even a strong repulsion
taking r (V) as slightly larger thanC/V1/3. Suchr (V) is, in
general, a very large positive quantity which diverges
1` whenV shrinks into the zero size together with pos
tively fixed U0.

Combining the findings in the current and previous s
tions, we can deduce the condition for the strong coupl
for a finite-size scatterer. Inserting Eq.~30! or Eq. ~31! into
Eq. ~16!, we obtain

Uv211
21/2M3/2

p2 AEN~V!U&D~z!

2
~37!

or

Uv211
C

V1/3U&D~z!

2
~38!

for z!EN(V) . Equation~38! indicates thatv
21.2C/V1/3 is

the condition for the strong coupling, and hence that
effects of a finite-size scatterer at low energy most stron
appear when it is weakly attractive, namely, when the b
strengthv is slightly negative. In the zero-size limit, th
condition ~38! is equivalent to
-

e

-

o
l-

y

o

-
g

e
ly
e

ur ~0!u&
D~z!

2
. ~39!

Equation~39! shows that it is the inverse ofr (0) that repre-
sents a direct measure of coupling strength of the zero-
limit of a scatterer. This naturally leads us to a definition
theeffective strengthof a pointlike scatterer by

veff[1/r ~0!. ~40!

Using the effective strengthveff , we can rewrite Eq.~39! as

uveff
21u&

D~z!

2
. ~41!

It can be observed from Eq.~34! that, if the origin of v̄21

axis is shifted to the strong coupling value2M3/2L1/2/2p,
the formal strengthv̄ is identical toveff . We can also say
that veff

21 is a ‘‘distance’’ to the strong coupling valu
v21.2C/V1/3, which is, in general, a large negative qua
tity for small V. Inserting Eqs.~15!, ~23!, and~33! into Eq.
~38!, we have

U 1

U0V
1

21/2M

p2V1/3U&M3/2

23/2
Az. ~42!

Equation ~42! is the condition for the strong coupling i
terms of the ‘‘observables;’’ at low energy where a finit
size scatterer can be approximated by a pointlike o
(z!1/MV2/3), a particle of massM moving in three-
dimensional billiards is most strongly coupled to a finite-s
(.V) scatterer of potential heightU0 under the condition
~42!. @As seen from the arguments above, the coefficients
V21/3 andAz in Eq. ~42! are not exact, but they are of th
order of, or approximately, the values in Eq.~42!.#

The effective strength of a pointlike scatterer can be
fined in two dimensions in a similar manner. However,
energy-dependent correction is needed in this dimens
One possible way to show this is to follow the arguments
the previous and present sections. Reference@11# has taken
this path. Instead, we here take an alternative manner w
makes it easy to understand the origin of the energy dep
dence specific to two dimensions. We begin by reexamin
the condition for the strong coupling in three dimensions, E
~16!, in terms of thed potential with a truncated basis. W
start by rewriting Eq.~16! as

u v̄212 ḡ~z!u&
D~z!

2
, ~43!

where ḡ (z) is defined in Eq.~7!. Recall that it behaves like
an interpolation of the inflection points ofḠ(z) in Eq. ~5!.
The energy dependence ofḡ (z) is expected to be small
Indeed, we haveḡ (z).2M3/2L1/2/2p from Eq. ~9!, irre-
spective to the energyz. This indicates that Eq.~43! is
equivalent to the condition~16!. Inserting Eqs.~7! and ~26!
into the condition~43!, we obtain
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Uv212^wn~xW0!
2&PE

0

EN~V!rav~E!

z2E
dEU&D~z!

2
. ~44!

This is the condition for the eigenvalue equation Eq.~24! to
have a solutionz around some inflection point of the LHS i
Eq. ~24!. Using Eqs.~3! and ~27!, we have

Uv212
M3/2

21/2p2F1
~3!~z,EN~V!!U& D~z!

2
. ~45!

Equation~45! is identical to Eq.~37! for z!EN(V) . Notice
thatF1

(3)(z,0)50, namely, the lower bound does not contri
ute on the principal integral.

Let us now consider a two-dimensional analogue of
finite-range potential~21!; it takes a constant valueU0 on a
finite-size region of areaV and zero everywhere else. Th
bare strengthv is defined byv5U0V as in three dimen-
sions. Then, one can deduce an analogous formula to
~44! in two dimensions. A crucial difference in two and thre
dimensions lies in the energy dependence of the ave
level density. For the billiard with areaS, it is given by
rav5MS/2p, according to Weyl’s formula. Sincerav is in-
dependent of energy in two dimensions, the analogue of
~44! is estimated by

F1
~2!~z,E![E dE

z2E
52 ln

uz2Eu
L

, ~46!

instead of Eq.~27!. Using ^wn(xW0)
2&.1/S for a generic po-

sition of the scatterer, we obtain

Uv212
M

2p
„F1

~2!~z,EN~V!!2F1
~2!~z,0!…U& D

2
, ~47!

namely,

Uv212
M

2pS ln zL 2 ln
EN~V!2z

L D U& D

2
. ~48!

Here, the widthD is estimated in a similar manner as in E
~15!;

D.p2^wn~xW0!
2&rav.

pM

2
, ~49!

which is independent of the energyz. The condition~48! is
identical to Eq.~51! in Ref. @11#, apart from a minor change
in the definition of the widthD in the RHS. In two dimen-
sion,F1

(2)(z,0) does not vanish and indeed has a logarithm
dependence on energy. This is the crucial difference from
three-dimensional case. At low energyz!EN(V).1/MV,
we have

Uv212
M

2pS ln zL 1 ln~MLV! D U& D

2
. ~50!

Equation~50! indicates that asV shrinks,v should behave
like
e

q.

ge

q.

c
e

v~V!51Y S M2p
ln~MLV!1r ~V! D , ~51!

where r (V) is a regular function which converges in th
zero-size limit,V→0. The first term in the denominator en
sures that the logarithmic divergence disappears in Eq.~50!.
Inserting Eq.~51! into Eq. ~50!, we obtain, in the zero-size
limit, a two-dimensional analogue of Eq.~39!;

Ur ~0!2
M

2p
ln
z

LU& D

2
. ~52!

This indicates that one can define the effective strength
the pointlike scatterer by

veff~z![1Y S r ~0!2
M

2p
ln
z

L D . ~53!

Equation~52! now reads

uveff~z!21u&
D

2
. ~54!

Equation~54! with Eq. ~53! embodies the logarithmic strip
of wave chaos that is the condition for the strong coupling
two dimensions. By comparing this to Eq.~1!, we obtain

v̄21.r ~0!. ~55!

The effective strengthveff can be regarded as the direct me
sure of coupling strength of the scatterer, as in three dim
sions, and its inverse,veff

21 , is a ‘‘distance’’ to a logarithmic
curve of the strong coupling limit. The logarithmic energ
dependence inveff exhibits a specific feature in two dimen
sions. It comes from nonvanishingF1

(2)(z,0) which can be
regarded as the origin of scale anomaly in a formalis
sense. Equation~51! shows

U0~V!51Y SMV

2p
ln~MLV!1r ~V!V D

51Y SMV

2p
ln~MLV!1r ~0!V1o~V! D .

~56!

Hence we obtain

H v~V!→20,

U0~V!→2`,
asV→0. ~57!

This is consistent with the fact that a pointlike scatterer s
ports a single eigenstate with an eigenvalue smaller t
E1, irrespective to the value of formal strengthv̄ (Þ0). The
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condition for the strong coupling in two dimensions
rewritten in a comparable form with experiment. I
serting v5U0V as well as Eq.~49! into Eq. ~50!, we
obtain

U 1

U0V
2

M

2p
ln~zMV!U& pM

4
~58!

for z!1/MV. An arbitrary mass scaleL disappears from
Eq. ~58!. Similarly to the three-dimensional case, the effe
of a finite-size scatterer at low energyz!1/MV appear most
strongly when it is weakly attractive@11#.

Our treatment is also applicable to one-dimensional ca
We end this section by showing that all the standard res
in the elementary textbooks on quantum mechanics for o
dimensionald function is recovered in our formalism. In on
dimension, one can define ad potential~of strengthv) with
the full unperturbed basis. The summation on the LHS in
~24! is convergent in the limit ofN(V)→`, since the aver-
age level density is inversely proportional to square root
energy;

rav~z!5
M1/2L

21/2p

1

Az
~59!

for one-dimensional billiards with widthL. The condition for
the strong coupling is given by an equation formally iden
cal to Eq.~44!;

Uv212^wn~x0!
2&PE

0

`rav~E!

z2E
dEU&D~z!

2
, ~60!

where^wn(x0)
2&.1/L and the width is given by

D~z!.p2^wn~x0!
2&rav.

pM1/2

21/2
1

Az
. ~61!

The principal integral in Eq.~60! can be estimated with th
use of

F1
~1!~z,E![E 1

~z2E!AE
dE5

1

Az
lnUAz1AE

Az2AEU , ~z.0!.

~62!

Since we haveF1
(1)(z,0)5F1

(1)(z,`)50, we get

uv21u&
D~z!

2
. ~63!

Therefore, in one dimension, the strong coupling with
pointlike scatterer is reached when the bare strengthv is
large. The property is energy independent~no
scale anomaly!. Since the width becomes narrow as t
energy increases, the effect of a pointlike scatterer w
any ~finite! bare strength disappears in the high ene
limit. The bare strengthv is identical to the effective
strengthveff in one dimension. They are related to the form
strength by
s

e.
ts
e-

.

f

-

h
y

l

v215veff
215 v̄212 (

n51

`

wn~x0!
2

En

En
21L2 . ~64!

In contrast to two and three dimensions, no divergent qua
tity appears in the definition of effective coupling. In analog
to the similar situation in quantum field theories, one mig
call this property of one-dimensional pointlike scatterer a
super-renormalizability. A pointlike scatterer of bare
strengthv is obtained as the zero-size limit of a finite-rang
(V) potential with heightU0[v/V in a natural manner. In
order to ensurevÞ0, U0 should behave like

U0~V!51/„r ~V!V…, ~65!

wherer (V) is regular in the zero-size limit. Since no singu
lar term appears inv(V)21 at V→0 limit, the usual zero-
size limit, in which the productU0V is kept constant, is
attained by keepingr (V) constant asV varies. Thus one
obtains a pointlike object with the bare strength

v51/r ~0!. ~66!

We may conclude from the current perspective that it is
accidental fortune of super-renormalizability that has e
abled the simple formulation of the one-dimensional Dira
d function with a straightforward limiting procedure.

IV. NUMERICAL EXAMPLE

We have revealed, in Sec. II, the condition for the appea
ance of the effects of a pointlike scatterer in three
dimensional quantum billiards. It has been applied to th
low-energy spectrum in case of a small but finite-size sc
terer in Sec. III. In this section, the predictions are confirme
by examining statistical properties of quantum spectrum. W
restrict ourselves to the exactly pointlike case. Even in th
case, the numerical burden of handling very large number
basis states is quite heavy, and a smart trick is required
overcome it.

FIG. 2. Plot of v̄2152M3/2/2p6D(z)/2. The effects of a
pointlike scatterer on the energy spectrum are expected to appea
the eigenstates in the region between both curves.
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We take a rectangular box as an outer billiard. We a
assume the Dirichlet boundary condition such that wa
functions vanish on the boundary. The mass scale is se
L51 in the following. Fixing the value ofL makes all
parameters dimensionless. The eigenvaluesEn and eigen-
functions wn(xW ) in Eq. ~5! are given by rearranging th
triple-indexed eigenvalues and eigenfunctions in ascend
order of energy;

Enxnynz
5

p2

2M H S nxl x D
2

1S nyl y D
2

1S nzl z D
2J , ~67a!
e

n

t
s

te
te

-
t
o
ev
-

ot

.

-
s

lu
o
e
to

g

wnxnynz
~xW !5A8

V
sin
nxpx

l x
sin
nypy

l y
sin
nzpz

l z

~nx,ny ,nz51,2,3, . . .!. ~67b!

The mass of a particle and the side lengths of the billiard
assumed to beM51/2 and (l x ,l y ,l z)5(1.0471976,
1.1862737,0.8049826), respectively. In this choice of
side lengths, the volume of the billiard isV51. We calculate
Ḡ(z) on the interval betweenEm andEm11 by
Ḡ~z!.^wn~xW0!
2&E

E1

Em22000S 1

z2E
1

E

E211D rav~E!dE1 (
n5m22000

m12000

wn~xW0!
2S 1

z2En
1

En

En
211D

1^wn~xW0!
2&E

Em12000

` S 1

z2E
1

E

E211D rav~E!dE. ~68!
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Whenm,2000, the first integral is discarded and the low
bound of the summation is replaced byn51 in Eq.~68!. The
integral in Eq.~68! is easily calculated by using Eq.~8!. The
approximation by Eq.~68! serves to reduce numerical burde
considerably, keeping a sufficient numerical accuracy.

For a moment, we restrict ourselves to the case where
scatterer is placed at the center of the billiard. In this ca

^wn(xW0)
2&5wn(xW0)

258/V, which is eight times larger than
the average value for generic cases. However, Eq.~16! is still
valid, since only one-eighth of the whole unperturbed sta
namely, that with even parity in each direction are affec
by the scatterer (nx,ny ,nz51,3,5,. . . ). Thesolid curves in
Fig. 2 representv̄2152M3/2/2p6D(z)/2. According to the
condition ~16! ~with L51), the effects of a pointlike scat
terer are expected to appear mainly in the eigenstates in
region between both curves. This is in fact the case as
served in Figs. 3 and 4, where the nearest-neighbor l
spacing distributionP(S) is displayed for various non
negative values ofv̄21 in two energy regions:z100;z3100 in
Fig. 3 andz17000;z20000 in Fig. 4, respectively. We have
numerically confirmed that the sign reversion ofv̄21 does
not change the qualitative behavior of the distribution in b
energy regions. Figures 3 and 4 show that the case
v̄2152M3/2/2p520.056269769.0 is closest to the
Wigner distribution~solid line!. It is numerically observed
that the second moment ofP(S) is given by
*0

`P(S)S2dS.1.5 for v̄2150, irrespective to the energy
This indicates thatP(S) is Wigner-like in the whole energy
region forv21.2M3/2/2p. As v̄21 increases,P(S) tends to
approach the Poisson distribution~dotted line!. However, its
rate depends on the energy. WhileP(S) becomes intermedi
ate in shape between the Poisson and Wigner distribution
v̄21.10 in Fig. 3, such distribution appears atv̄21.30 in
Fig. 4. This can be easily understood from Fig. 2; the va
r

he
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s,
d

he
b-
el

h
of

at

e

of 2M3/2/2p1D(z)/2 is 11.3 atz160058303.96, and 25.7 a
z18500542508.80, respectively. These values can be con
ered as the upper bound ofv̄21 for inducing a Wigner-like
shape inP(S) at each energy region. Withv̄21 beyond the
bound, the system is not substantially different from t
empty billiard, and as a result,P(S) resembles the Poisso
distribution. In Fig. 5, the spectral rigidityD3(L) is shown
for various values ofv̄21. The average is taken in the sam
energy region as in Fig. 3. We can see the gradual shif
Poisson statistics~dotted line! as v̄21 increases. Beyond
v̄21.20, the value ofD3(L) is close to the Poisson predic
tion, L/15. There still exists an appreciable difference fro
random-matrix prediction~solid line! even for the strong-
coupling limit (v̄2152M3/2/2p.0).
A similar tendency has been reported in two-dimensio
cases@10#. This can be understood from the fact that t
range of thenth perturbed eigenvalue is restricted to t
region betweennth and (n11)th unperturbed ones in cas
of a single pointlike scatterer. As a result, the number
perturbed eigenstates on a certain energy interval does
differ largely from the number of unperturbed ones in t
same region. This restriction does not apply to the case
multiple number of pointlike scatterers. We can therefo
expect that the increase of the number of scatterers make
energy spectrum more rigid. For two-dimensional rectan
lar billiard, a recent calculation corroborate this argume
@4#.

Up to now, we have placed a pointlike scatterer at a s
cific position, namely, the center of the rectangular box. W
next show the level statistics for the case of a generic lo
tion for the pointlike scatterer. In Fig. 6, we show th
nearest-neighbor level spacing distributionP(S) for a box
with a scatterer located atxW05(0.5129731,0.5489658
0.3342914). The formal coupling is chosen to bev̄2150.
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FIG. 3. The nearest-neighbor level spacin
distributionP(S) is shown for various values o
v̄21 in case of the scatterer being located at t
center of the rectangular solid. The statistics a
taken within the eigenvalues betwee
z10051307.95 andz3100512932.70.~The eigen-
values are numbered by taking into account on
the eigenstates with even parity in each dire
tion.! The solid~dotted! line is the Wigner~Pois-
son! distribution.
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Although a nearly maximal coupling is expected to be
tained with this value ofv̄21, the level repulsion is rathe
weak and the observedP(S) is considerably different from
the Wigner distribution. This can be understood by cons
ering the state dependence ofwn(xW0)

2. In case that the scat
terer is placed at the center, the value ofwn(xW0)

2 is indepen-
dent of the unperturbed states:wn(xW0)

258/V for even parity
states in each direction. This ensures a smooth chang
the value ofḠ(z) at the successive inflection points. F
a generic position of the scatterer, however, the va
of wn(xW0)

2 changes nearly at random asn varies, causing
a considerable fluctuation of the inflection points ofḠ(z).
As a result, it frequently happens that successive
perturbed states are not substantially affected by the scat
even with the strong coupling value of the formal strength
should be also noticed that, for the generic position of
scatterer, the width of strong coupling is substantia
smaller than its average estimate given in Eq.~16!. This
-

-

of

e

-
rer
t
e

can be understood as follows. Define the width for thenth
state by

Dn~z![p2wn~xW0!
2rav~z! ~69!

with z.zn.En . Sincewn(xW0)
2 ranges from 0 to 8/V asn

varies, the widthDn(z) fluctuates between 0 and 8D(z) for a
genericxW0. Since its average is given byD(z), it frequently
occurs thatDn(z) is substantially smaller thanD(z) for
successiven. This also explains why the coupling o
the pointlike scatterer is rather weak for the generic ca
@For the case that the scatterer is located at the cen
we have Dn(z)5D(z), irrespective to the unperturbe
states.# Clearly, a successive existence of the eigenstates
affected by the scatterer is a specific feature of a sing
scatterer case. As the number of scatterers increases,
tendency disappears because only in very rare occurre
none of the scatterers has a substantial influence
successive unperturbed eigenstates, as long as the cou
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FIG. 4. Same as Fig. 3 except for the ener
region between z17000540184.77 and z20000
544767.02.
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strength of each scatterer satisfies the condition~16!. Again,
for two-dimensional cases, numerical results support this
sertion@4#.

V. CONCLUSION

To conclude the paper, we summarize the findings in
previous sections. Equation~16! in Sec. II is precisely the
necessary condition for the appearance of wave chaos
three-dimensional pseudointegrable billiards with pointl
scatterers. The condition is essentially different from that
two dimensions. Whereas it is described by a logarithmica
energy-dependent strip with an energy-independent widt
two dimensions, it is characterized by a parabola with a sy
metric axis parallel to the energy axis in three dimensio
This implies that in three-dimensional billiards, the effect
the pointlike scatterer is stronger in the higher energy reg
The numerical experiments using the rectangular box c
firm the assertion that even a single pointlike scatterer bri
s-

e

for

r
y
in
-
s.
f
n.
n-
s

about wave chaos under the predicted condition, although
precise amount of the effect depends on the location of
scatterer.

Since the condition for wave chaos, Eq.~16! is described
in terms of the formal strengthv̄ of the pointlike scatterer, it
is not directly applicable to the case for realistic finite-si
impurities. For this in mind, we have examined a relati
between formal strengthv̄ of the pointlike scatterer and th
bare strengthv of the finite-size potential which is defined i
a natural way as the product of height and volume of
constant potential on a finite-size region. The relation
tween v̄ and v also makes clear how one should take
zero-size limit to obtain a pointlike object with a given fo
mal strength. It is shown thatv21 has an inverse cubic-roo
divergence inV→0 limit in three dimension. It is also
shown that one can use a regular part ofv21 @r (V) in Eq.
~32!# as a direct measure of the coupling strength of a sm
scatterer. In other words, the inverse of the regular part c
responds to the effective strength of the scatterer. Since
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coefficient of the singular part ofv21 is negative, wave
chaos is expected to appear at low energy in case of w
attraction.

We have reviewed the previously known results in tw
dimensions from the present perspective. Similarly to
three dimensional case, the inverse of the bare coup
v21 has to contain a singularity as a function of the size
the scatterer, and the regular part ofv21 plays a central role
in determining the effective coupling strength. There is
crucial difference, however. In two dimensions, a logari
mically energy-dependent correction term is required to
fine the effective strength. The existence of the ener
dependent term results in a peculiar feature for t
dimensions, namely, the scale anomaly. Its origin is ide
fied as thez dependence ofF1

(2)(z,E50) in Eq.~46! for two
dimensions. There is no corresponding term for three~and
one! dimensions.

A few words on the relevance of our results to the billia
problem with more generic boundary shapes are in order
placing small obstacles along the boundary and around
edges of the rectangular billiard considered here, one
construct systems which approxiamte billiards of vario
boundary shapes. Therefore, from our rather special exam
with a pointlike scatterer, we might hope to obtain som
insight into the generic quantum billiard problem both in tw
and three dimensions. At the same time, extreme care ha
be taken when one deals with the high energy limit a
discuss the relevance of the asymptotic behaviors foun

FIG. 5. The spectral rigidityD3(L) is shown for various values
of v̄21 in the energy region betweenz10051307.95 and
z3100512932.70. The scatterer is located at the center of the
liard. The solid ~dotted! line is the prediction of random-matrix
~Poisson! statistics.
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our examples to the generic case. This becomes eviden
considering the fact that infinite numbers of obstacle
needed to simulate a given boundary shape at short w
length.

In a sense, the current work amounts to the search
sensible zero-size limit of small obstacles in the quant
mechanics of general spatial dimension. Apart from the c
of one dimension, where super-renormalizability guarant
the existence of trivial limit (d function!, one encounters a
subtle balance of divergence and renormalizability, wh
results in nontrivial properties of coupling strengths. W
hope that we have persuaded the readers that the mod
the billiards with pointlike scatterer is a valid, mathema
cally sound, and practically useful idealization of the qua
tum system with small impurities. We also hope that t
predictions in this paper are to be checked through the
periments in the laboratories. In particular, Eqs.~42! and
~58! for three and two dimensions, respectively, can be
rectly tested, since they are stated in an experimentally c
trollable form. Recent progress of microwave techniqu
with macroscopic devices@19–22# offers a possible opportu
nity.
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